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noninvasive measures of 
physiological stress are confounded 
by exposure
Diana J. R. Lafferty1,2,3,7*, Marketa Zimova3,4,7, Lindsay clontz2, Klaus Hackländer5 & 
L. Scott Mills3,6

Glucocorticoids and glucocorticoid metabolites are increasingly used to index physiological stress 
in wildlife. Although feces is often abundant and can be collected noninvasively, exposure to biotic 
and abiotic elements may influence fecal glucocorticoid metabolite (FGM) concentrations, leading 
to inaccurate conclusions regarding wildlife physiological stress. Using captive snowshoe hares 
(Lepus americanus) and simulated environmental conditions, we evaluated how different realistic 
field conditions and temporal sampling constraints might influence FGM concentrations using an 
11-oxoetiocholanolone-enzyme immunoassay. We quantified how fecal pellet age (i.e., 0–6 days), 
variable summer temperatures, and precipitation affected FGM concentrations. Fecal pellet age 
had a strong effect on FGM concentrations (βAge = 0.395, s.d. = 0.085; β2

Age = −0.061, s.d. = 0.012), 
which were lowest at the beginning and end of our exposure period (e.g., meanday6 = 37.7 ng/mg) 
and typically highest in the middle (meanday3 = 51.8 ng/mg). The effect of fecal pellet age on FGM 
concentrations varied across treatments with warm-dry and cool-wet conditions resulting in more 
variable FGM concentrations relative to control samples. Given the confounding effects of exposure 
and environmental conditions, if fresh fecal pellet collection is not an option, we encourage researchers 
to develop a temporally consistent sampling protocol to ensure all samples are exposed to similar 
environmental conditions.

Understanding wildlife responses to local and broad-scale environmental perturbations poses an enormous 
challenge for scientists, wildlife managers, and policy makers. The current need for reliable tools that can be 
used to measure and monitor wildlife responses to environmental stressors is exacerbated further by ongoing 
global environmental change. Over the past decade, assessments of adrenocortical activity, particularly measures 
of glucocorticoids (stress hormones) and glucocorticoid metabolites, have been used increasingly to index the 
stress burden experienced by diverse taxa1–6. In fact, fecal glucocorticoid metabolites (FGM) have been shown 
to provide an integrative measure of circulating glucocorticoids, representing the physiological state of the target 
animal over a well-defined period of time7. Feces is a particularly useful matrix for measuring stress hormone 
metabolite concentrations because it is relatively abundant and can be collected with minimal disturbance to 
study animals1,5,7, thus eliminating the confounding effects of capture stress8–10.

While measures of FGM concentrations have great potential to contribute to integrative wildlife conserva-
tion and management11, important sampling caveats that can affect stress levels estimated from fecal samples 
must be considered1,4,5,12. Whether an increase, decrease or no changes in FGM concentration is detected within 
fecal samples from a target population often depends on multiple factors including: 1) the species and sex of the 
individuals being sampled; 2) the species-specific and sex-specific glucocorticoid metabolism in combination 
with the immunoreactivity of the antibody utilized in the enzyme immunoassay (EIA); 3) the steroid extraction 
method applied to measure FGM concentrations7. For example, variation in measures of FGM concentrations 
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may result from differences in immunoreactivity of the numerous glucocorticoid metabolites present in feces, 
particularly if feces has been exposed to water7,13,14. Because water is highly polar, samples exposed to precipita-
tion may result in more rapid extraction of the most polar metabolites, followed later by less polar metabolites13. 
As such, the effects of water exposure on FGM concentrations will in turn depend on the affinities of the antibody 
used to measure the FGMs in the sample7,13,14. However, measures of FGM concentrations may also be influenced 
by environmental factors. For instance, ambient temperature and humidity can affect bacterial metabolization 
that can result in possible increases or decreases in FGM concentrations14–16. Differences in microclimates across 
the range of American pika (Ochotona princeps) have been reported to influence FGM concentrations when 
feces are not immediately collected and preserved after defecation17. Hot and dry environmental conditions were 
associated with decreased FGM concentrations in cheetah (Acinonyx jubatus)14, whereas precipitation seemed to 
cause a “washing-out effect” in which FGM leached from the feces of mountain hare (Lepus timidus)18. However, 
a recent study that evaluated the suitability of different EIAs for monitoring adrenocortical activity in leopards 
(Panthera pardus), found that FGM concentrations remained relatively stable over a six-day period post defeca-
tion19. Evidently, the confounding effects of exposure time and abiotic environmental conditions are variable by 
species and in some situations mitigated by observing animals and collecting samples immediately after defe-
cation20,21 or possibly by sampling feces deposited in snow22. However, observing defecation may be logistically 
challenging for a variety of taxa, and the collection of feces on snow is not possible impossible outside of the snow 
season or in the tropics. Thus, understanding how environmental conditions affect FGM concentrations is both 
complex and important for developing rigorous noninvasive sampling protocols for any wildlife study.

We use snowshoe hares (Lepus americanus), as an example to illustrate the variable influence of time and envi-
ronmental conditions on FGM concentrations. Snowshoe hares are particularly suitable for our study for three 
main reasons. First, from an eco-evolutionary perspective, snowshoe hares have emerged recently as a model 
organism for understanding the effects of climate change on seasonal coat color changing species23–26. However, 
before scientists can evaluate whether snowshoe hares exhibit a biologically meaningful stress response to ongo-
ing climate change, we must first establish rigorous sampling protocols for obtaining representative samples from 
which measures of physiological stress can be indexed. Second, a protocol for quantifying FGM concentrations 
from fecal material using an 11-oxoetiocholanolone-EIA is well established27 and validated for snowshoe hares28. 
Third, results from previous research determined the lag time between stress-induced cortisol production and 
the expression of cortisol metabolites in snowshoe hare fecal pellets is approximately eight hours, thus providing 
a sampling frame over which an animal may be held in a trap during field-based operations28, thereby allowing us 
to conduct a controlled experiment that closely mimics potential field constraints.

Using a captive collection of snowshoe hares and simulated environmental conditions, we examined the effect 
of realistic field conditions and temporal sampling constraints on FGM measurements. First, we tested how fecal 
pellet age (i.e., exposure time of 0–6 days), temperature (summer warm [23.5 °C], summer cool [7.3 °C]) and 
precipitation (dry, wet) affected FGM concentrations. Second, we evaluated at what fecal pellet age FGM levels 
begin to differ from FGM concentrations in control samples when exposed to different environmental treatments 
(precipitation and temperature combinations). Finally, we provide recommendations for field study design to 
ensure measures of FGM concentrations represent the physiological state of the target animal and/or populations.

Results
We found that the age of feces affects FGM concentrations, and the age-FGM relationship has a curvilinear shape 
(βAge = 0.395, s.d. = 0.085; β2

Age = −0.061, s.d. = 0.012). FGM concentrations peaked on day 3 (meanday3 = 51.8 ng/
mg, s.d. = 24.8) and were lowest on day 6 (meanday6 = 37.7 ng/mg, s.d. = 24.6). Temperature, precipitation and sex 
had no significant effect on FGM concentrations during those days (alpha set at 0.05).

We found multiple significant differences between the FGM concentrations in the control samples and FGM 
concentrations exposed to the environmental treatments (Fig. 1). We did not detect a particular age at which 
FGM concentrations consistently began to differ from the control samples (i.e., day 0). Instead, we found substan-
tial variation in the trend of FGM concentration over time across all experimental treatments. For example, in the 
CW treatment, FGM concentrations initially declined and then followed the curvilinear trajectory, whereas FGM 
concentrations in the CD treatment were the most consistent over the six-day exposure period. Overall, we found 
that FGM concentrations differed from those measured in the control samples most often in the WD (on three 
days) and the CW (on two days) (Fig. 1).

Discussion
Our results indicate that the length of time between snowshoe hare defecation (i.e., pellet age) and fecal sample 
collection can affect FGM measurements. For example, our data from the WD treatment show an initial increase 
in FGM concentrations over the first four days followed by a decline in FGM concentrations over the last two 
days (Fig. 1). However, both WW and CW treatments resulted in an initial decline in measures of FGM concen-
trations before rising to concentrations similar to or higher than FGM concentrations measured from control 
samples (Fig. 1), which likely resulted from fecal pellet exposure to simulated precipitation and subsequent effects 
on immunoreactivity associated with polarity. For instance, water is highly polar and thus subjecting samples to 
simulated precipitation might result the rapid elution of the most polar metabolites, followed by the less polar 
metabolites13. While the effects of precipitation exposure on measures of FGM concentrations may dissipate over 
time, thus resulting in FGM concentrations returning to near-baseline levels, the period of time over which this 
occurs is somewhat variable and must be considered when collecting samples representing various ages, particu-
larly if samples were exposed to different levels of moisture over different periods of time. The observed changes 
in FGM concentrations under different temperature and precipitation treatments illuminate the importance of 
obtaining fresh fecal samples or samples collected within the same time frame whenever possible.
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Results from our controlled experiment also demonstrate that the effect of fecal pellet age varies across differ-
ent environmental conditions. For example, the effect of fecal pellet age was strongest under warm dry and cool 
wet conditions, where the measured FGM differed most frequently from the control samples (Fig. 1). On the 
other hand, FGM concentrations were least variable over the six-day exposure period represented by a cool and 
dry summer conditions (Fig. 1). Results from earlier studies of diverse taxa have shown that increased temper-
atures sometimes result in higher FGM concentrations relative to control samples14,17,29. On the other hand, the 
effects of precipitation (or moisture) on FGM concentrations are variable, leading to increased or decreased FGM 
concentrations15,17,30. Both of our experimental temperature treatments that included simulated precipitation 
resulted in initial FGM decreases, which may have been the result of a ‘washing-out’ effect in which our applica-
tion of precipitation removed some FGMs from the sample or possibly a consequence of issues associated with 
metabolite polarity7,13,14. Furthermore, the effects of temperature and precipitation on the FGM concentrations 
may interact; for example, increased microbial activity in warmer temperatures may be offset by FGM degrada-
tion or potential washout when feces are exposed to precipitation. However, whether measures of FGM concen-
trations show an increase, decrease or no change, is complex and may be related to species, sex, or species-sex 
specific glucocorticoid metabolism and even to the specific extraction method7. In conclusion, it is critical to 
reduce sample exposure to uncontrolled environmental conditions that may influence measurements of FGM 
concentrations.

Given the confounding effect of pellet exposure time on FGM measurements, our study demonstrates the 
need to preserve snowshoe hare feces immediately following defecation. Whenever collection of fresh feces is not 
possible, as often the case with free-ranging wildlife, including snowshoe hares, we strongly advise researchers 
apply a systematic sampling protocol to ensure all sampled feces are subjected to similar exposure times and 
environmental conditions prior to sample preservation. For example, if environmental conditions are stable, 
line transects or plots could be cleared of feces initially and re-checked for fecal pellet samples within a specified 
timeframe (e.g., one day, two days). Landscape cloths deployed for short time periods may also be an efficient 
way to collect feces of known age31. For snowshoe hares specifically, we recommend sampling feces during cool 
dry conditions in the summer. More generally, we advise against opportunistic use of samples collected for pur-
poses other than for measuring FGM concentrations unless the collected samples are of known age (e.g., one day, 
two days) and collected under similar environmental conditions throughout the sampling period. Samples of 
unknown age or collected during variable environmental conditions may not accurately reflect the physiological 
state of the animals sampled and should not be used to infer stress responses or should be used very cautiously 
when drawing conclusions about the stress response of the target population. Noninvasive measures of physi-
ological stress can be a powerful tool for evaluating wildlife responses to diverse environmental changes or for 

Figure 1. Modeled snowshoe hare FGM concentrations (ng/mg; log-transformed) over time subject to 
different environmental treatments. Points show means and bars show standard errors across all individuals 
each day (n = 15). Control FGM concentrations, shown in red, were quantified from samples collected within 
eight hours of defecation and are the same in each panel. Modeled FGM concentrations are based on measured 
FGM concentrations from pellets exposed to different environmental conditions, shown in black. Statistically 
significant differences between the exposed samples and the controls are indicated by the asterisks (alpha 
level = 0.05). Figure created by S. J. Gillman.
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monitoring changes in stress among individuals in free-ranging populations. Our study demonstrates the impor-
tance of careful study design and systematic sampling to ensure data are high quality and therefore useful for 
drawing meaningful ecological conclusions about wildlife stress.

Materials and Methods
Animals and housing. Fifteen wild-caught adult snowshoe hares were used in this experiment. Animals 
were captured in Lolo National Forest in Montana, USA (2 females, 3 males) and Mt. Baker-Snoqualmie National 
Forest in Washington, USA (4 females, 6 males). Animals were transferred from the field to an environmental 
facility at North Carolina State University (NCSU), College of Veterinary Medicine (CVM) and maintained in 
captivity for approximately one year prior to this experiment. Environmental rooms at this facility replicated 
site-specific temperature and photoperiod from the capture location of the animals. Animals were housed indi-
vidually in wire mesh enclosures (121.9 cm width × 60.9 cm depth × 73.6 cm height) including a wire mesh floor 
with a waste collection tray below the wire floor, lined with absorbent paper. Enclosures included an acrylic 
hide box (30.5 cm width × 60.9 cm depth × 73.6 cm height) that functioned as a visual barrier between animals, 
as well as an edible grass mat and grass hut to hide in or sit atop. Water and premium natural adult rabbit food 
(Sherwood Pet Health, Logan, UT, USA) were available ad libitum. All capture, handling, transport, husbandry 
and experimental procedures were approved by North Carolina State University Institutional Animal Care and 
Use Committee (IACUC) and we confirm that all procedures were performed in accordance with approved 
IACUC protocol 14-069-0.

fecal sample collection. On evenings prior to pellet collection, we replaced the absorbent paper in the 
waste collection tray beneath each enclosure between 2145 and 2200 hours to provide a clean substrate for sam-
pling. Then for six consecutive days, between 0600 and 0610 hours, we collected all fecal pellets beneath each 
animal’s enclosure, except pellets that were in contact with urine because urine may affect measured FGM con-
centrations12. We choose this eight-hour sampling frame to represent the time over which an animal may be held 
in a trap during field-based operations, which corresponds to the approximate lag time between stress-induced 
cortisol production and the expression of cortisol metabolites in snowshoe hares28. While this eight-hour sam-
pling window could impact within-sample FGM homogeneity32, we previously quantified within-sample varia-
tion in snowshoe hare FGM and found that FGM is relatively homogeneously distributed within snowshoe hare 
fecal pellet groups accumulated over a similar sampling frame (2200-0800)33. As such, we placed each sample in 
an individually labeled bag and transferred it to a −20 °C freezer within 5 minutes of collection. Then, at the end 
of the collection period, we pooled each animal’s pellets and thoroughly mixed them, thereby creating a single 
large sample per individual. Each individual’s pooled sample was then subsequently divided into 25 equal por-
tions based on sample wet weight. The pooled sample was necessary to obtain sufficient volume to be divided into 
25 subsamples for the temperature and precipitation treatments and to ensure we obtained a sample representa-
tive of the average FGM concentration in pellets per individual as opposed to a random stress event, which could 
have unduly biased our FGM measurements.

experimental treatments. To assess the effect of age (max 6 days), all but one subsamples (n = 24) 
per individual were randomly assigned to one of 4 treatments for varying number of days. One subsample 
per individual was assigned to a pre-treatment control that was immediately returned to the −20 °C freezer. 
Environmental treatments included: (1) warm-dry [WD], (2) warm-wet [WW], (3) cool-dry [CD], and (4) 
cool-wet [CW]. Warm and cool temperatures represented average summer temperature in Washington and 
Montana and were based on monthly 1981–2010 normal temperatures in July and August at the snowshoe hare 
capture sites (mean warm = 23.5 °C; mean cool = 7.3 °C) (PRISM Climate Group). Similarly, summer precipita-
tion was based on 1981–2010 normal precipitation data (PRISM Climate Group) during July and August (mean 
wet = 1 mm; dry = 0 mm). Accordingly, we applied 1 mm of precipitation daily at 0800 am via a hand-held spray 
bottle each day 24 hrs. prior to sample collection for the WW and CW treatments. For the experiment, all but 
the control samples were placed in a 17.78 cm × 17.78 cm soak resistant paper bowl with approximately 40 pine 
(Pinus sp.) needles broken into thirds to cover the bottom of the bowl. Samples were then subjected to an assigned 
environmental treatment (WD, WW, CD, CW) for up to 6 days. We collected samples at the end of each day treat-
ment period and immediately placed the samples in a −20 °C freezer until FGM extractions.

Extraction and quantification of fecal glucocorticoid metabolites. We thoroughly homogenized 
each sample using a glass mortar and pestle and then dried the samples at 80 °C for 48 hours33. After drying, we 
removed a 0.15 g subsample and placed it in 8.0 ml glass centrifuge tube with 5.0 ml of 80% methanol16. Next, we 
shook samples on a hand vortex for one minute and centrifuged each sample at 2,500 g for 15 minutes16. Following 
centrifugation, 0.5 ml of supernatant was transferred to micro-centrifuge tubes and dried for 2 hours at 80 °C16. 
Fecal extracts were then shipped to the Department of Biomedical Sciences, Unit of Physiology, Pathophysiology 
and Experimental Endocrinology at the University of Veterinary Medicine in Vienna, Austria for steroid analysis 
using an enzyme immunoassay (EIA)33. Concentrations of FGM were quantified in fecal extracts using an estab-
lished 11-oxoetiocholanolone-EIA protocol27 validated for snowshoe hares28.

Data analysis. Prior to analysis, we assessed the data for outliers by visually inspecting the raw values for 
each day and tested for normality and equal variances using diagnostic plots. We subsequently log-transformed 
FGM data to meet the assumption of normality and confirmed it using diagnostic plots. To determine the effects 
of fecal pellet age, temperature and precipitation on the FGM concentration, we fitted linear mixed effects mod-
els using the package lme434. We included the fixed effects of age (days 1 through 6 of treatment exposure), 
precipitation (wet, dry) and temperature (warm, cool), and the random effect of individual hare to account for 
among-individual differences in FGM concentrations. In addition to linear terms, we included a quadratic term 
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to allow for a potential curvilinear response of FGM concentrations to fecal pellets’ age. Additionally, we included 
a fixed effect of sex to examine its potential influence on the FGM concentrations.

Next, we tested the effect of pellets age on FGM concentrations to determine when FGM concentrations begin 
to vary within each environmental treatment relative to control FGM concentrations. We allocated the samples 
from the four different treatments into daily intervals (days 0 [i.e., control] through exposure day 6) and ran a 
simple mixed model for each treatment with a single fixed effect age coded as a factor and individual hares as a 
random effect. All statistical tests were conducted using R 3.3.235 and significance of fixed effects were assessed 
with an alpha level of 0.05.

Received: 29 July 2019; Accepted: 26 November 2019;
Published: xx xx xxxx

References
 1. Möstl, E. & Palme, R. Hormones as indicators of stress. Domestic animal endocrinology 23, 67–74 (2002).
 2. Palme, R., Rettenbacher, S., Touma, C., El-Bahr, S. & Möstl, E. Stress hormones in mammals and birds: comparative aspects 

regarding metabolism, excretion, and noninvasive measurement in fecal samples. Annals of the New York Academy of Sciences 1040, 
162–171 (2005).

 3. Sheriff, M. J., Dantzer, B., Delehanty, B., Palme, R. & Boonstra, R. Measuring stress in wildlife: techniques for quantifying 
glucocorticoids. Oecologia 166, 869–887 (2011).

 4. Dantzer, B., Fletcher, Q. E., Boonstra, R. & Sheriff, M. J. Measures of physiological stress: a transparent or opaque window into the 
status, management and conservation of species? Conservation Physiology 2, cou023 (2014).

 5. Millspaugh, J. J. & Washburn, B. E. Use of fecal glucocorticoid metabolite measures in conservation biology research: considerations 
for application and interpretation. General and comparative endocrinology 138, 189–199 (2004).

 6. Goymann, W. On the use of non‐invasive hormone research in uncontrolled, natural environments: the problem with sex, diet, 
metabolic rate and the individual. Methods in Ecology and Evolution 3, 757–765 (2012).

 7. Palme, R. Non-invasive measurement of glucocorticoids: Advances and problems. Physiology & behavior 199, 229–243 (2019).
 8. Harper, J. M. & Austad, S. N. Fecal glucocorticoids: a noninvasive method of measuring adrenal activity in wild and captive rodents. 

Physiological and Biochemical Zoology 73, 12–22 (2000).
 9. Millspaugh, J. J. et al. Fecal glucocorticoid assays and the physiological stress response in elk. Wildlife Society Bulletin, 899–907 

(2001).
 10. Touma, C. & Palme, R. Measuring fecal glucocorticoid metabolites in mammals and birds: the importance of validation. Annals of 

the New York Academy of Sciences 1046, 54–74 (2005).
 11. Madliger, C. L. et al. Success stories and emerging themes in conservation physiology. Conservation Physiology 4, cov057 (2016).
 12. Palme, R. Measuring fecal steroids: guidelines for practical application. Annals of the New York Academy of Sciences 1046, 75–80 

(2005).
 13. Wasser, S. K. et al. A generalized fecal glucocorticoid assay for use in a diverse array of nondomestic mammalian and avian species. 

General and comparative endocrinology 120, 260–275 (2000).
 14. Terio, K. A., Brown, J. L., Moreland, R. & Munson, L. Comparison of different drying and storage methods on quantifiable 

concentrations of fecal steroids in the cheetah. Zoo Biology 21, 215–222 (2002).
 15. Washburn, B. E. & Millspaugh, J. J. Effects of simulated environmental conditions on glucocorticoid metabolite measurements in 

white-tailed deer feces. General and comparative endocrinology 127, 217–222 (2002).
 16. Palme, R., Touma, C., Arias, N., Dominchin, M. F. & Lepschy, M. Steroid extraction: get the best out of faecal samples. Wien Tierarztl 

Monatsschr 100, 238–246 (2013).
 17. Wilkening, J. L., Ray, C. & Varner, J. When can we measure stress noninvasively? Postdeposition effects on a fecal stress metric 

confound a multiregional assessment. Ecology and evolution 6, 502–513 (2016).
 18. Rehnus, M. Habitat selection of the Mountain hare (Lepus timidus) in the Central Alps. (na, 2009).
 19. Webster, A. B., Burroughs, R. E., Laver, P. & Ganswindt, A. Non-invasive assessment of adrenocortical activity as a measure of stress 

in leopards Panthera pardus. African Zoology 53, 53–60 (2018).
 20. Creel, S., Creel, N. M., Mills, M. G. & Monfort, S. L. Rank and reproduction in cooperatively breeding African wild dogs: behavioral 

and endocrine correlates. Behavioral Ecology 8, 298–306 (1997).
 21. Creel, S. et al. Snowmobile activity and glucocorticoid stress responses in wolves and elk. Conservation Biology 16, 809–814 (2002).
 22. Creel, S., Winnie, J. A. & Christianson, D. Glucocorticoid stress hormones and the effect of predation risk on elk reproduction. 

Proceedings of the National Academy of Sciences 106, 12388–12393 (2009).
 23. Zimova, M., Mills, L. S. & Nowak, J. J. High fitness costs of climate change‐induced camouflage mismatch. Ecology letters 19, 

299–307 (2016).
 24. Mills, L. S. et al. Winter color polymorphisms identify global hot spots for evolutionary rescue from climate change. Science 359, 

1033–1036 (2018).
 25. Mills, L. S. et al. Camouflage mismatch in seasonal coat color due to decreased snow duration. Proceedings of the National Academy 

of Sciences 110, 7360–7365 (2013).
 26. Jones, M. R. et al. Adaptive introgression underlies polymorphic seasonal camouflage in snowshoe hares. Science 360, 1355–1358 

(2018).
 27. Palme, R. & Möstl, E. Measurement of cortisol metabolites in faeces of sheep as a parameter of cortisol concentration in blood. 

Zeitschrift fuer Saeugetierkunde (Germany) (1997).
 28. Sheriff, M. J., Bosson, C. O., Krebs, C. J. & Boonstra, R. A non-invasive technique for analyzing fecal cortisol metabolites in snowshoe 

hares (Lepus americanus). Journal of Comparative Physiology B 179, 305–313 (2009).
 29. Millspaugh, J. J., Washburn, B. E., Milanick, M. A., Slotow, R. & van Dyk, G. Effects of heat and chemical treatments on fecal 

glucocorticoid measurements: implications for sample transport. Wildlife Society Bulletin, 399–406 (2003).
 30. Stetz, J., Hunt, K., Kendall, K. C. & Wasser, S. K. Effects of exposure, diet, and thermoregulation on fecal glucocorticoid measures in 

wild bears. PloS one 8, e55967 (2013).
 31. Cheng, E., Hodges, K. E., Sollmann, R. & Mills, L. S. Genetic sampling for estimating density of common species. Ecology and 

evolution 7, 6210–6219 (2017).
 32. Ganswindt, A., Tordiffe, A. S. W., Stam, E., Howitt, M. & Jori, F. Determining adrenocortical activity as a measure of stress in African 

buffalo (Syncerus caffer) based on faecal analysis. African Zoology 47, 261–269 (2012).
 33. Lafferty, D. J., Kumar, A. V., Whitcher, S., Hackländer, K. & Mills, L. S. Within-sample variation in snowshoe hare faecal 

glucocorticoid metabolite measurements. Conservation physiology 5, cox068 (2017).
 34. Bates, D., Maechler, M., Bolker, B. & Walker, S. lme4: Linear mixed-effects models using Eigen and S4. R package version 1.1-7. This 

is computer program (R package). The URL of the package is: http://CRAN.R-project.org/package=lme4 (2014).
 35. Team, R. C. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 

2015, http.www.R-project.org (2016).

https://doi.org/10.1038/s41598-019-55715-5


6Scientific RepoRtS |         (2019) 9:19170  | https://doi.org/10.1038/s41598-019-55715-5

www.nature.com/scientificreportswww.nature.com/scientificreports/

Acknowledgements
North Carolina State University, University of Montana, Institute of Wildlife Biology and Game Management 
at the University of Natural Resources and Life Sciences, Vienna (BOKU), Austria, and the National Science 
Foundation Division of Environmental Biology (grant # 1354449 to L.S. Mills) provided financial support for 
this project. We thank E. Klobetz-Rassam for FGM analysis as well as J. W. Lafferty, J. McAlister, R. Venezia 
for assistance with animal husbandry, sample collection and processing. We also thank S. J. Gillman for figure 
creation. We are grateful to M. McKinlay and the animal care team at the College of Veterinary Medicine at North 
Carolina State University. All of husbandry and sample collection procedures were approved by North Carolina 
State University Institutional Animal Care and Use Committee (Protocol 14-069-0).

Author contributions
D.J.R.L. conceived of the idea for the experiment. D.J.R.L. and L.C. designed and carried out the experiment. 
D.J.R.L. and L.C. performed fecal extractions while K.H. provided training and oversight for fecal extractions. 
M.Z. analyzed the data. L.S.M. provided assistance with study design and statistical advice. D.J.R.L. and M.Z. 
wrote the manuscript with constructive insights from L.C., K.H. and L.S.M. All authors reviewed the manuscript.

competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41598-019-55715-5.
Correspondence and requests for materials should be addressed to D.J.R.L.
Reprints and permissions information is available at www.nature.com/reprints.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2019

https://doi.org/10.1038/s41598-019-55715-5
https://doi.org/10.1038/s41598-019-55715-5
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Noninvasive measures of physiological stress are confounded by exposure
	Results
	Discussion
	Materials and Methods
	Animals and housing. 
	Fecal sample collection. 
	Experimental treatments. 
	Extraction and quantification of fecal glucocorticoid metabolites. 
	Data analysis. 

	Acknowledgements
	Figure 1 Modeled snowshoe hare FGM concentrations (ng/mg log-transformed) over time subject to different environmental treatments.




