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Abstract
1.	 Advancements in phenology and changes in morphology, including body size re-

ductions, are among the most commonly described responses to globally warming 
temperatures. Although these dynamics are routinely explored independently, the 
relationships among them and how their interactions facilitate or constrain adap-
tation to climate change are poorly understood.

2.	 In migratory species, advancing phenology may impose selection on morphologi-
cal traits to increase migration speed. Advancing spring phenology might also 
expose species to cooler temperatures during the breeding season, potentially 
mitigating the effect of a warming global environment on body size.

3.	 We use a dataset of birds that died after colliding with buildings in Chicago, IL to 
test whether changes in migration phenology are related to documented declines 
in body size and increases in wing length in 52 North American migratory bird 
species between 1978 and 2016. For each species, we estimate temporal trends in 
morphology and changes in the timing of migration. We then test for associations 
between species-specific rates of phenological and morphological changes while 
assessing the potential effects of migratory distance and breeding latitude.

4.	 We show that spring migration through Chicago has advanced while the timing of 
fall migration has broadened as a result of early fall migrants advancing their mi-
grations and late migrants delaying their migrations. Within species, we found that 
longer wing length was linked to earlier spring migration within years. However, 
we found no evidence that rates of phenological change across years, or migratory 
distance and breeding latitude, are predictive of rates of concurrent changes in 
morphological traits.

5.	 These findings suggest that biotic responses to climate change are highly multidi-
mensional and the extent to which those responses interact and influence adapta-
tion to climate change requires careful examination.
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1  | INTRODUC TION

Changes in morphology, life history and geographical range in re-
sponse to anthropogenic climate change have been recorded across 
a wide range of taxa (Parmesan & Yohe,  2003; Root et  al.,  2003; 
Scheffers et al., 2016; Thackeray et al., 2016; Walther et al., 2002). 
Shifts in these three axes of adaptation are predicted to be wide-
spread responses to global warming (Gardner et al., 2011). Although 
changes in each of these dimensions are often explored inde-
pendently in relation to warming temperatures, the interactions 
among them are likely complex. For example, there is some evi-
dence of a coupled relationship between phenological and morpho-
logical changes (Eastman et  al.,  2012; Ozgul et  al.,  2010; Van Gils 
et al., 2016). Other studies have found that changes in phenology 
could mitigate the need for changes in geographical range (Bennett 
et al., 2015; Socolar et al., 2017). However, owing to the sparsity of 
long-term datasets that contain data on multiple dimensions of bi-
otic responses to climate change, phenological, biogeographical and 
morphological changes tend to be studied individually, and the role 
of interactions among them in facilitating or constraining adaptation 
to climate change remains poorly understood.

Phenological shifts in seasonal migration are thought to be 
largely driven by the need to minimize mismatches between the 
timing of breeding and seasonal pulses in the availability of food 
as warming temperatures change the phenology of resource bases 
(Cohen et al., 2018; Kharouba et al., 2018). There is broad evidence 
that birds have advanced their timing of spring migration, breeding 
site arrival and clutch initiation in recent decades, though there 
is also ample interspecific variation in these responses (Bitterlin 
& Van Buskirk,  2014; Dorian et  al.,  2020; Gordo & Sanz,  2006; 
Hällfors et al., 2020; Usui et al., 2017; Van Buskirk et al., 2009). 
By contrast, shifts in fall migration phenology appear to be less 
consistent (Bitterlin & Van Buskirk, 2014; Chambers et al., 2014; 
Jenni & Kéry,  2003; Lehikoinen et  al.,  2004; Mills,  2005; Van 
Buskirk et  al.,  2009). The proximate mechanisms facilitating 
phenological shifts in migration are often unclear (Horton, Van 
Doren, et  al.,  2019; Knudsen et  al.,  2011). Most studies report 
individual modification of the speed of migration, a dynamic 
that could involve adjustments to stopover frequency and dura-
tion (Haest et al., 2020; Lameris et al., 2018; Oliver et al., 2020; 
Schmaljohann, 2018; Schmaljohann & Both, 2017) or flight speed 
(Corman et al., 2014).

Changes in avian morphology over recent decades, notably in 
wing shape and length, have largely been ascribed to changing ther-
moregulatory needs imposed by warming temperatures (Gardner 
et  al.,  2014, 2019; Yom-Tov et  al.,  2006) or selection on birds' 
dispersal abilities in altered habitats (Desrochers,  2010; Martin 
et  al.,  2017; Moreno-Rueda & Rivas,  2007). In migratory birds, 
there is evidence linking the morphology of the flight apparatus and 
the phenology of migration, raising the possibility of a connection 
between shifting phenology and wing morphology. For example, 
lower wing loading (smaller mass relative to wingspan) and higher 
wing aspect ratio (longer, more pointed wings) yield more efficient 

flight (Claramunt et al., 2012; Kipp, 1958; Pennycuick, 2008). Within 
species, individuals with higher aspect ratios have been shown to 
migrate faster or arrive earlier to their breeding grounds in spring 
(Bowlin, 2007; Cooper et al., 2011; Hahn et al., 2016; Potti, 1998). 
The documented interactions between morphological traits, flight 
performance and migration phenology suggest that phenological 
changes due to climate change may impose selection pressures on 
morphology to increase flight efficiency. For example, increased 
selection pressure to migrate faster to arrive earlier on the breed-
ing grounds (Alerstam, 2011; Giery & Layman, 2019; Kokko, 1999; 
Nilsson et  al.,  2013; Spottiswoode et  al.,  2006) might drive mor-
phological shifts towards longer, more-pointed wings or lower wing 
loading. Such morphological changes could be adaptive if they in-
crease flight speed (Corman et al., 2014) or if they reduce refuel-
ling needs on migration due to improved flight efficiency (Bowlin & 
Wikelski, 2008; Burns, 2003; Lank et al., 2017). However, the ex-
tent to which selection to adjust migration phenology has involved 
adaptive shifts in morphological traits related to flight speed and 
efficiency is largely unknown, particularly in the context of recent 
phenological shifts.

Changes in overall body size driven by climate change may also 
interact with phenological shifts. Body size declines have largely 
been attributed to increasing temperatures (Audzijonyte et al., 2020; 
Baudron et  al.,  2014; Daufresne et  al.,  2009; Forster et  al.,  2012; 
Gardner et al., 2011; Sheridan & Bickford, 2011; Weeks et al., 2020a). 
In endothermic species, smaller bodies are more efficient at dissipat-
ing heat (Speakman & Król, 2010) which is advantageous in a warmer 
climate (Bergmann, 1847; Mayr, 1956). Recent increases in tempera-
ture have been suggested to yield body size reductions in birds 
through natural selection against larger size (Prokosch et al., 2019; 
Van Buskirk et al., 2010) or via developmental plasticity that yields 
smaller adult body size when developing nestlings become heat 
stressed (Andrew et al., 2017; Cunningham et al., 2013). However, 
phenological shifts might mitigate this response to climate change. 
For example, Socolar et  al.  (2017) suggested that if birds advance 
their nesting phenology such that broods develop earlier in spring, 
they may not require geographical range shifts to maintain their 
thermal niches as climates warm. By similar logic, if advancing migra-
tion phenology results in species breeding earlier in the season, this 
may offset the effect of rising temperatures in the breeding range 
and reduce the effect of increasing temperature on body size. Yet, 
the interaction between shifts in migratory phenology and body size 
are largely unknown.

Here, we test the relationships between shifts in migra-
tory phenology and changes in morphology in 52 species of 
North American birds. We do this using a four-decade dataset 
that includes morphological trait and migration phenology data 
from salvaged window-killed specimens in Chicago, IL (Weeks 
et  al.,  2020a). These birds collided with buildings during their 
spring and fall migrations between their breeding ranges (north of 
Chicago) and wintering grounds (south of Chicago; Figure 1). From 
1978 to 2016, nearly all species experienced both declines in body 
size (as indicated by tarsus length, mass and a multivariate principal 
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components-based index) and simultaneous increases in relative 
wing length (Weeks et al., 2020a). Weeks et al. (2020a) attributed 
the observed body size reductions to warming summer tempera-
tures on the breeding grounds but did not test for phenological 
shifts. They also proposed that the increases in wing length may be 
a result of selection to maintain migration by increasing flight ef-
ficiency, as an adaptive compensation for the increased energetic 
costs of flight as the species got smaller. Here, we test whether in-
creasing wing length could alternatively be explained by selection 
imposed by advancing migration phenology to increase migration 
speed.

We take a three-part approach to testing the relationship be-
tween shifts in migratory phenology and morphological change. 
First, to characterize how individual morphology and migration 
phenology interact, we test whether individuals with longer wing 
length relative to their body size migrate through Chicago ear-
lier in the year. Based on previous studies (Bowlin, 2007; Cooper 
et al., 2011; Hahn et al., 2016; Potti, 1998), we predict that longer-
winged birds will migrate earlier in the spring. Second, we charac-
terize how the timing of migration through Chicago has changed 
over the past 40 years, predicting an advancement in spring phe-
nology. Third, we assess whether rates of change in morphology 
are correlated with rates of change in migration phenology. If 
selection pressure to advance phenology is driving the observed 

increases in wing length, we predict faster increases in wing length 
in species that have advanced their spring phenology the most. 
Likewise, if phenological shifts towards earlier breeding season 
are mitigating the influence of warming summer temperatures on 
body size, we predict slower rates of body size declines in those 
species that have advanced their phenology the most. We also 
test whether the rates of change in fall migration phenology are 
associated with changes in wing length and body size, though the 
expected nature of these relationships is less clear than for spring 
migration (Knudsen et al., 2011).

The magnitude of recent warming has been greater at higher 
latitudes (IPCC,  2013), suggesting that breeding latitude may in-
fluence the degree to which species have advanced phenology or 
experienced changes in morphology. Additionally, the capacity of 
species to adjust their migratory phenology or morphology may 
depend on their migratory distance, as longer-distance migrants 
are thought to have more limited ability to respond to phenolog-
ical changes on distant breeding grounds and potentially greater 
constraints on morphological adjustments given their physiologi-
cally demanding journeys (Møller et al., 2017; Rubolini et al., 2010). 
Therefore, we leverage the diversity of breeding latitudes and mi-
gratory distances among the 52 species in this dataset to assess 
how these variables mediate patterns of phenological and morpho-
logical changes.

F I G U R E  1   The 52 species in this 
study were collected in Chicago (star) as 
they migrated between their breeding 
ranges (red) and wintering grounds 
(blue). Solid and dashed lines depict likely 
destinations, based on known migratory 
paths. Plots show the mean number of 
specimens collected on each day in fall 
(top) and spring (bottom) from 1978 to 
2016
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2  | MATERIAL S AND METHODS

2.1 | Dataset

We use a museum dataset from Weeks et al. (2020a) that includes 
70,716 bird specimens from 52 species of North American migra-
tory birds, spanning 11 families and 30 genera. Fifty of 52 species 
are passerines, with one rail Porzana carolina and one woodpecker 
Sphyrapicus varius (Table S1). These specimens were salvaged after 
they died following collisions with buildings in Chicago, IL, which 
is one of the most dangerous cities in the United States for build-
ing collisions driven by artificial light at night (Horton, Nilsson, 
et al., 2019; Winger et al., 2019). Collision monitoring and collec-
tion of individuals were conducted every year from 1978 to 2016 
when species fly through Chicago during spring migration (around 
March 1 to May 31) and again during the fall migration (around 
August 15 to early November; Figure 1). Specimens were collected 
the morning after death for nocturnal collisions or within a day of 
death for diurnal collisions. Therefore, collection date was used as 
an index of each individual's passage date through Chicago. The 
date was transformed into Julian day (day 1  =  January 1st). We 
assume that the passage dates through Chicago are a reasonable 
proxy for relative timing of arrival on the breeding grounds in the 
spring.

A single person (D.E.W.) measured tarsus length using digital 
calipers, wing length using a wing rule and mass using a digital 
scale of each individual carcass prior to preparation as a museum 
specimen. Weeks et al.  (2020a) found that both tarsus and mass 
declined through time in most species in the dataset, as did the 
first principal component of a multivariate dataset that also in-
cluded bill length. The length of the tarsus relative to body size 
varies widely across bird species depending on their ecology and 
behaviour and is therefore a poorer proxy than mass for interspe-
cific differences in body size. However, tarsus is a more sensitive 
indicator of intraspecific variation in body size than mass due to 
rapid changes in mass that occur throughout migration depend-
ing on body condition, energetics and food availability (Rising & 
Somers, 1989; Senar & Pascual, 1997). Therefore, following Weeks 
et al. (2020a), we focus on tarsus length as the best index of recent 
body size change. Individuals were sexed based on gonadal inspec-
tion and aged based on skull ossification to Hatch Year (fall birds 
hatched that summer) and After Hatch Year (all spring birds and all 
fall birds at least one year old). To model the relationship between 
phenology and migration, we followed Weeks et  al.  (2020a) and 
included only 52 species that had 100 or more specimens with all 
morphological measurements throughout the study period and at 
least 10 specimens measured per decade. All results are qualita-
tively similar when including only species (n  =  22) that had 500 
or more specimens with morphological measurements through-
out the study period, with at least 100 measurements per decade 
(Tables S2–S5).

All species in our dataset are migratory. For each species, mi-
gratory distance was calculated as the great-circle distance (or 

orthodromic distance; the shortest distance between two points on 
the surface of a sphere) between their breeding and wintering range 
centroids (Table S1). The range centroids were based on breeding and 
wintering ranges (BirdLife International, 2015) that were cropped to 
exclude unlikely breeding destinations for birds migrating through 
Chicago, IL (see Weeks et al., 2020a for details; Figure 1).

2.2 | Relationship between wing length and within-
year migration phenology

All generalized linear mixed models (GLMMs) were implemented in 
the MCMCglmm package (Hadfield, 2010) in r (R Core Team, 2018). 
To test whether wing length predicts intra-annual variation in spring 
and fall migration phenology, we modelled Julian day as a function 
of the logarithm of relative wing length (i.e. log(wing length/tarsus 
length)), with sex, age and year (transformed to start at zero in 1978) 
included as fixed effects. Additionally, we ran an identical set of 
models but instead of using relative wing length, we included both 
the logarithm of tarsus and the logarithm of wing length as predic-
tors to test the potential effect of using a ratio in the model. Spring 
and fall data were modelled separately.

We accounted for phylogenetic relatedness by including phy-
logeny as a random effect in the models. The phylogenetic variance 
covariance matrix was based on 1,000 ultrametric trees from the 
posterior distribution of a global phylogeny of birds (Jetz et al., 2012) 
based on the backbone phylogeny of Hackett et al. (2008). The pos-
terior distribution was used to generate a 50% majority-rule con-
sensus tree with DendroPy (Sukumaran & Holder, 2010), following 
Rubolini et  al.  (2015). In brief, bifurcations were included in the 
consensus when they occurred in >50% of the trees from the pos-
terior distribution, and if a branching event was not supported in 
>50% of the trees, a polytomy was formed. Branch lengths were 
calculated with the SumTrees function in DendroPy (Sukumaran & 
Holder,  2010), which assigns ages to nodes based on the median 
ages of those nodes across the posterior distribution of input trees.

All GLMMs were run for 120,000 iterations with a burn-in of 
20,000 iterations and a thinning interval of 100 iterations. We used 
diffuse normal priors for the fixed effects (mean 0, variance 108) 
and an uninformative inverse-Wishart distribution with V =  1 and 
nu = 0.002 for the random effect, following the recommendations 
of Hadfield (2010). We examined trace plots to ensure proper chain 
mixing and checked for autocorrelation between samples (all values 
were <0.1). The strength of phylogenetic signal was calculated as 
the proportion of variance attributable to the phylogenetic relation-
ships (Hadfield & Nakagawa, 2010) which is equivalent to Pagel's λ 
(Housworth et al., 2004).

2.3 | Shifts in migration phenology across years

To quantify shifts in spring and fall migration phenology, we tested 
whether the early, median and late dates of migration through 
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Chicago have changed over the past 40  years using linear mixed-
effects models in the lme4 package (Bates et  al.,  2015). For each 
year, we calculated the early, median and late passage dates as 5th, 
50th and 95th sample percentiles, respectively, for each species. 
Next, we modelled those passage dates as a function of year (trans-
formed to start at zero) with a random intercept and slope for year 
for each species. We included two interaction terms between year 
and migratory distance and year and mean breeding range latitude 
in the models to test the effect of migratory distance and breed-
ing range latitude, respectively, on the degree of phenological shifts. 
Migratory distance and breeding range latitude, both estimated at 
the species level, were centred and standardized to have a mean of 
zero and standard deviation of 1 in all analyses.

2.4 | Relationship between phenological and 
morphological shifts

We tested whether shifts in migration phenology predict shifts in 
relative wing and tarsus length over time. For each species, we cal-
culated rates of change in spring and fall migration phenology as 
the rates of change in spring and fall passage dates during 1978–
2016 using linear mixed-effects models. In these models, Julian day 
was modelled as a function of year (transformed to start at zero), 
sex and age as fixed effects and random intercepts and slopes for 
year for each species. Spring and fall were modelled separately. The 
resulting random slopes represent species-specific rates of spring 
or fall passage date change over the past four decades in days per 
year.

Data on rates of change in morphology were obtained following 
Weeks et al. (2020a), who quantified species-specific values of rates 
of change in tarsus and relative wing lengths in percent per year using 
the same dataset. The logarithm of wing length and tarsus length 
was each modelled as a function of year (transformed to start at 
zero), sex and age as fixed effects and random intercepts and slopes 
for year were estimated for each species using linear mixed-effects 
models. Because both wing and tarsus lengths were log-transformed 
prior the analyses, the resulting random slopes represent species-
specific rates of percent change in tarsus or wing length per year, a 
measure that is directly comparable between differently sized spe-
cies. The model estimating rates of change in the logarithm of wing 
length also included the logarithm of tarsus length as a fixed effect, 
which is equivalent to using relative wing length (the logarithm of 
wing length/tarsus length), as the dependent variable.

We then tested for associations between the species-specific 
rates of phenological and morphological changes using phyloge-
netic generalized least squares (PGLS) models in the ape package 
(Paradis et al., 2004; Pinheiro et al., 2013). To test whether phe-
nological shifts imposed selection on wing morphology to increase 
migration speed, we modelled species' rates of change in relative 
wing length as a function of their rates of change in phenology. 
Next, to test whether advancing spring phenology mitigated the ef-
fects of warming on body size declines, we modelled species' rates 

of change in tarsus length as a function of their rates of change in 
phenology. In these models, we also included migration distance 
(scaled) and breeding range latitude (scaled) as covariates to ex-
amine their effect on rates of change in morphology. To account 
for non-independence of observations caused by phylogenetic re-
latedness, we incorporated the same phylogenetic variance cova-
riance matrix as described above. All PGLS models were fit using a 
Brownian motion model of evolution with simultaneous estimation 
of Pagel's λ (Pagel, 1999).

2.5 | Comparison of estimated migration phenology 
with eBird data

To assess whether our collision dataset is a reliable reflection of mi-
gration phenology within and across years, we compared it to citizen 
science observations from eBird (Sullivan et al., 2009; www.ebird.
org, ‘basic’ dataset, accessed 1 May 2020). We downloaded obser-
vations for the 52 species for Cook County, IL, where Chicago is 
located, during the spring and fall migration periods (1 March–31 
May, 1 August–30 October). We only used observations from the 
last 10 years (2007–2016), owing to the low sampling effort in earlier 
years. Using these data, we calculated the 5th, 50th and 95th pas-
sage dates for each species for each year (i.e. the same statistics we 
calculated for our collision dataset).

To test whether the collision data reflect annual migration phe-
nology for each year, we modelled each collision-based passage date 
(collision passage date) as a function of its equivalent eBird-based 
passage date (eBird passage date) using linear models. Second, to 
assess whether the collision data collection was consistent over time 
(i.e. did not bias our estimates of phenological shifts), we modelled 
the residuals derived from regressing the collision passage dates on 
eBird passage dates as a function of year using linear models. We 
run separate models for each phenology date (i.e. 5th, 50th and 95th 
passage date) and season.

3  | RESULTS

3.1 | Relationship between wing length and within-
year migration phenology

We found a strong association between relative wing length and 
spring migration phenology, but no relationship between relative 
wing length and fall migration phenology (Table  1). After control-
ling for phylogeny and species identity, individuals with longer wings 
relative to their body size migrated through Chicago earlier in the 
spring (−10.242, 95% CI [−13.197, −7.0498], p  <  0.001; Table  1). 
Phylogenetic signal was strong in spring and fall with λ = 0.950 and 
λ = 0.913, respectively (Table 1). The effects of relative wing length 
on intra-annual migration phenology were similar when we used tar-
sus length and wing length as separate predictors instead of relative 
wing length (Table S6).

http://www.ebird.org
http://www.ebird.org
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3.2 | Shifts in migration phenology across years

In the spring, on average, the early (=5th sample percentile) 
(−0.123 ± 0.0252 days/year, p < 0.001, Table S7, Figure 2) and me-
dian (−0.0686 ± 0.0201, p < 0.01, Table S7, Figure 2) passage dates 

advanced, but late passage date (=95th sample percentile) remained 
the same (0.0339 ± 0.0300 days/year, p = 0.263, Table S7, Figure 2). 
In the fall, the median date did not change (−0.0230 ± 0.0255 days/
year, p  =  0.376, Table  S8, Figure  2), but the overall passage dura-
tion increased: the early date advanced (−0.249  ±  0.0354  days/

Coefficient Estimate Lower CI Upper CI
MCMC 
p-value

Pagel's λ 
(95% CI)

Spring

Intercept 131.362 91.732 172.018 <0.001 0.950
(0.932, 

0.969)
Year −0.0415 −0.0524 −0.0291 <0.001

SexM −6.801 −7.0624 −6.553 <0.001

Relative wing −10.242 −13.197 −7.0498 <0.001

Fall

Intercept 274.493 236.919 315.387 <0.001 0.913
(0.879, 

0.941)
Year −0.0338 −0.0461 −0.0202 <0.001

SexM 2.350 2.0924 2.600 <0.001

AgeHY −1.740 −2.0443 −1.450 <0.001

Relative wing −1.199 −4.792 1.868 0.458

TA B L E  1   Increased relative wing 
length is associated with earlier migration 
in the spring but not the fall. We modelled 
the effects of relative wing length on 
spring and fall mean passage date of 
52 North American migratory bird 
species during the period 1978–2016, 
while controlling for year, sex, age and 
phylogeny. SexM denotes males and 
AgeHY denotes hatch year birds

F I G U R E  2   Shifts in migration phenology in 52 North American migratory birds from 1978 to 2016. Points represent species-specific 
rates of change in each spring (top row) and fall (bottom row) passage date through Chicago in days per year, with the bars showing their 
respective standard errors (Table S9), derived from the linear mixed-effects models. Spring early and median passage dates have advanced, 
but late passage dates have not. In the fall, the median date did not change, but the early date advanced and the late passage date got later. 
Migratory distance, indicated by the color scale, impacted the degree of spring advancement in the median and potentially in the early 
passage dates, although its effects were weak
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year, p  <  0.001, Table  S8, Figure  2) and the late passage date got 
later (0.176  ±  0.0324  days/year, p  <  0.001, Table  S8, Figure  2). 
Migratory distance impacted the degree of advancement in the 
spring, with shorter-distance migrants having advanced their median 
(0.0482 ± 0.0168, p < 0.01, Table S7, Figure 2), and potentially early 
(0.0384 ± 0.0209., p = 0.0739, Table S7, Figure 2) passage dates, more 
than long-distance migrants. No effects were detected for the spring 
late passage date or for any of the fall passage dates (all p values > 0.1, 
Tables S7 and S8). Mean breeding range latitude had no effect of phe-
nological shift in either season (all p values > 0.1, Tables S7 and S8).

3.3 | Relationship between phenological and 
morphological shifts

Rate of change in spring or fall migration phenology was not related 
to the rates of change in relative wing length or tarsus length (all p 
values > 0.05, Table 2, Figure 3). Additionally, we found no evidence 
that differences in migratory distance or breeding range latitude are 
associated with different rates of change in either morphological 
trait (all p values > 0.05, Table 2). We found strong phylogenetic sig-
nal in all models (all λ > 0.8, Table 2).

3.4 | Comparison of estimated migration phenology 
with eBird data

The phenology dates estimated based on our collision data and eBird 
were similar within and across years. The eBird passage dates were rel-
evant predictors of the collision passage dates for all dates and seasons 

(all R2 value ranged between 0.56 and 0.84 except for 5th passage date in 
the fall = 0.26; all p values < 0.001, Figure S1). Such a strong relationship 
between the collision- and eBird-based passage dates indicates that our 
collision dataset provides a reliable data for annual timing of migration 
through Chicago. Furthermore, year was not a relevant predictor of the 
residuals resulting from regressing collision passage dates on eBird pas-
sage dates for any passage date or season (all p values > 0.1), suggesting 
a lack of temporal trend in differences between collision data and eBird.

4  | DISCUSSION

As warming temperatures lead to shifts in morphology, phenology 
and range, it is important to understand the extent to which interac-
tions among these axes of adaptation facilitate or inhibit adaptive 
responses to climate change. Using over 70,000 specimens from 
52 species of North American migratory birds, we document wide-
spread changes in both spring and fall migration phenology but find 
that these phenological changes do not explain the concurrent wide-
spread shifts in morphology. Furthermore, we found no evidence 
that species' migratory distances or differential rates of warming 
at the breeding grounds—as indexed by breeding range latitude—
influence the rates of morphological changes.

4.1 | Individuals with longer wings migrate earlier 
each spring

We found that individuals with longer wings relative to their body 
size pass through Chicago earlier in the spring (Table 1), suggesting 

TA B L E  2   No effects of rate of change in spring and fall migration phenology, migratory distance and breeding latitude on the rate of 
change in relative wing length and tarsus length for 52 North American migratory bird species during the period 1978–2016. Migratory 
distance and breeding latitude were centred and standardized to have a mean of 0 and a standard deviation of 1

Coefficient Estimate SE t value p(>|t|) Pagel's λ

Relative wing length
Spring

Intercept 2.74E−04 1.59E−04 1.724 0.0911 0.820
(0.569, 1.0710)Spring rate 1.28E−03 7.56E−04 1.698 0.0959

Migratory distance −5.69E−05 3.21E−05 −1.769 0.0832

Breeding latitude 4.06E−06 2.55E−05 0.159 0.874

Relative wing length
Fall

Intercept 2.33E−04 1.64E−04 1.422 0.162 0.830
(0.557, 1.103)Fall rate −3.03E−04 3.54E−04 −0.858 0.395

Migratory distance −3.50E−05 3.18E−05 −1.101 0.276

Breeding latitude 5.13E−06 2.60E−05 0.198 0.844

Tarsus length
Spring

Intercept −4.75E−04 1.45E−04 −3.277 0.002 0.980
(0.923, 1.0368)Spring rate −7.70E−04 4.61E−04 −1.671 0.101

Migratory distance 1.90E−05 1.92E−05 0.991 0.327

Breeding latitude 1.29E−05 1.33E−05 0.964 0.340

Tarsus length
Fall

Intercept −4.54E−04 1.53E−04 −2.964 0.0047 0.988
(0.944, 1.0322)Fall rate −8.56E−05 1.95E−04 −0.438 0.663

Migratory distance 1.26E−05 1.90E−05 0.664 0.510

Breeding latitude 7.99E−06 1.28E−05 0.622 0.537
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a link between morphology and timing of migration. Similar strong 
effects of individual wing length and shape on spring migration 
phenology have been described in previous studies that focused on 
single species (Bowlin, 2007; Cooper et al., 2011; Hahn et al., 2016; 
Potti, 1998), and these relationships have been attributed to the in-
fluence of wing morphology on flight efficiency and speed (Yong & 
Moore, 1994). However, this relationship could be complicated by 
breeding geography, if early migrant individuals breed further north 
and have longer relative wing lengths. In contrast to the spring, no 
effects of wing length were detected on annual fall passage dates 
(Table 1). The lack of connection between fall migration phenology 
and morphology may be due to weaker selection for increased mi-
gration speed during fall migration (Karlsson et  al.,  2012; Nilsson 
et al., 2013).

4.2 | Advancing spring passage dates and extended 
fall passage duration

Using comparisons with eBird data, we find that our window colli-
sion data represent a reliable proxy for migration phenology, both 
within and across years, suggesting they can be used to detect trends 
through time (Figure S1). Our finding that spring migration has ad-
vanced is consistent with widespread evidence of earlier spring 
migration in birds across the globe (Bitterlin & Van Buskirk,  2014; 
Chambers et al., 2014; Gordo & Sanz, 2006; Lehikoinen et al., 2004; 
Miller-Rushing et  al.,  2008; Mills,  2005; Oliver et  al.,  2020; Usui 
et  al.,  2017; Van Buskirk et  al.,  2009). According to recent multi-
species studies, migratory birds have advanced their mean spring 

migration phenology by on average 2.1–2.2 days per decade globally 
(Cohen et al., 2018; Usui et al., 2017), and 0.4–1.0 days per decade 
in North America (Dorian et al., 2020; Horton, La Sorte, et al., 2019; 
Mayor et al., 2017). This is similar to what we find, with the early, and 
median passage dates through Chicago occurring 1.2 and 0.7, respec-
tively, days per decade earlier on average across species (Figure 2, 
Table S7). Our results indicate that, after controlling for differences 
among species, the earliest migrants have advanced their phenol-
ogy twice as fast as the population median. Similar findings were re-
ported for other species (Bitterlin & Van Buskirk, 2014) in response to 
stronger warming earlier than later in the spring (Ahola et al., 2004).

Albeit considerably less studied than spring migration (Gallinat 
et  al.,  2015; Haest et  al.,  2019), changes in fall migration phenol-
ogy tend to be more variable across taxa and continents (Barton 
& Sandercock,  2018; Chambers et  al.,  2014; Jenni & Kéry,  2003; 
Lehikoinen et  al.,  2004; Mills,  2005). Consistent with previous 
studies (Bitterlin & Van Buskirk, 2014; Van Buskirk et al., 2009), we 
find no shifts in median fall migration date across species (Figure 2, 
Table S8). However, there has been increasing variation in the timing 
of fall migration, with the first migrants advancing their migration 
(2.4 days per decade) and late migrants migrating later (1.7 days per 
decade; Figure 2, Table S8). This is similar to other studies that docu-
mented increasing fall passage duration (Covino et al., 2020; Dorian 
et al., 2020; Miles et al., 2017). The earlier departure from the breed-
ing grounds may result from earlier breeding and/or earlier moult 
completion as documented in multiple species (Mitchell et al., 2012; 
Saino et al., 2017; Stutchbury et al., 2011; van Wijk et al., 2017, but 
see Tomotani et al., 2019). On the other hand, the protraction of fall 
migration, especially in combination with the advancement of spring, 

F I G U R E  3   There is no relationship 
between phenological shifts and the rate 
of change in wing length or body size. 
Points represent species-specific rates of 
change, dotted lines through 0 indicate no 
change in morphological traits
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may be the result of longer breeding seasons selecting for double 
brooding and/or re-nesting after failed breeding attempts (Halupka 
& Halupka, 2017; Jenni & Kéry, 2003; Møller et al., 2010; Townsend 
et al., 2013; Végvári et al., 2010); but see Hällfors et al., 2020).

Our study is consistent with previous studies (Bitterlin & Van 
Buskirk,  2014; Knudsen et  al.,  2011; Végvári et  al.,  2010) in find-
ing that short-distance migratory species advanced spring migration 
phenology more than long-distance migrants (Table S7); the latter 
may be more reliant on photoperiodic cues and less able to re-
spond to local weather conditions at the breeding grounds (Åkesson 
et al., 2017; Both & Visser, 2001; Butler, 2003; Dawson et al., 2001; 
Gwinner, 2003; Lehikoinen et al., 2004; Miller-Rushing et al., 2008; 
Rubolini et al., 2007; Usui et al., 2017). However, we found no ev-
idence that migratory distance affected phenological shifts in the 
fall (Table S8), in contrast to studies that have suggested that short-
distance migrants tend to delay their departure while long-distance 
migrants tend to advance fall migration (Jenni & Kéry,  2003; Van 
Buskirk et al., 2009). Finally, we found no effect of breeding latitude 
on phenological shifts in either season, corroborating previous find-
ings in migratory birds (Rubolini et al., 2007; Usui et al., 2017), but 
see Horton, La Sorte, et al.,  (2019). Although global meta-analyses 
showed greater phenological shifts in animals and plants occupying 
higher latitudes (Parmesan, 2007; Post et al., 2018), the relationships 
between latitude and phenological responsiveness are likely com-
plex (Chmura et al., 2019).

4.3 | Phenological shifts have been independent of 
morphological change

We find clear evidence that migratory phenology has shifted con-
currently with consistent increases in wing length in the same set 
of species (Weeks et  al.,  2020a). Given that we find longer wing 
length is associated with earlier migration within years (Table 1), the 
advancing date of spring migration over time could select for, and 
be accomplished by, increased wing length. However, we found no 
evidence that species that are advancing their phenology faster are 
also experiencing faster increases in wing length (Table 2, Figure 3). 
Furthermore, we found no evidence that species with longer migra-
tory distance or those breeding at higher latitudes showed faster 
increases in wing length (Table 2). Together, these findings suggest 
that, while the phenology of migration has changed, it has not driven 
the observed increase in wing length.

The lack of association between phenological responses and 
increasing wing length suggests that spring advancements are ac-
complished through means other than morphological adaptation for 
more efficient flight. Previous studies have shown that variables re-
flecting fuel deposition (e.g. stopover duration, foraging rate) have 
a stronger impact on migration speed than those related to flight 
speed (Houston, 2000; Nilsson et al., 2013). Similarly, studies track-
ing individuals throughout migration showed that annual advance-
ments in spring migration phenology were achieved via adjustments 
in stopover frequency and duration (Haest et  al.,  2020; Lameris 

et  al., 2018; Oliver et al., 2020). Future research will benefit from 
studies that link morphological differences, flight speed and individ-
ual migration phenology by tracking individuals along their entire 
migration routes (McKinnon & Love, 2018).

In addition to being decoupled from increases in wing length, we 
found no evidence that advancing spring phenology mitigated the 
nearly universal declines in body size in response to warming tem-
peratures documented across species in this study (Table 2; Weeks 
et  al.,  2020a). In early developmental stages, altricial birds have 
little ability to thermoregulate endogenously and are effectively 
poikilothermic (Andreasson et  al.,  2016; Dunn,  1975; Pereyra & 
Morton, 2001). Therefore, shifts in ambient temperatures can affect 
growth and body size, with heat-stressed nestlings reaching smaller 
body size (Andrew et al., 2017; Cunningham et al., 2013; Rodríguez 
et  al.,  2016; Wada et  al.,  2015). If advanced spring phenology re-
sulted in earlier breeding, developing nestlings might experience less 
drastic increases in ambient temperature and as a result would be 
predicted to show smaller declines in body size. It is possible that 
we did not find a relationship between advancing phenology and 
rates of body size decline because advanced arrival on the breed-
ing grounds has not led to proportionate advancements in repro-
duction. While earlier arrival on the breeding grounds is generally 
associated with earlier initiation of reproduction (Moore et al., 2005; 
Visser et  al.,  2015; Woodworth et  al.,  2016), some studies have 
shown that species that recently advanced migration phenology 
did not advance breeding (Ahola et al., 2004; Lameris et al., 2018; 
Valtonen et al., 2017). Finally, it is possible that the error associated 
with our single-point estimates of rates of change prevented us from 
detecting relationships between phenological shifts and changes in 
morphology.

5  | CONCLUSIONS

While interactions among shifts in phenology, morphology and range 
are expected to influence species responses to climate change, our 
understanding of these interactions is limited. We find that across a 
diverse group of 52 North American migratory bird species, spring 
migration phenology has advanced over the past 40  years, con-
current with widespread shifts in morphology. Our analysis of a 
dataset with more than 70,000 individual observations spanning a 
40-year period indicates that these phenological and morphological 
changes are decoupled. This lack of association between shifts in 
phenology and morphology is compelling given the consistent and 
near-universal nature of the changes in both of those dimensions, 
and the strong empirical and theoretical connections between wing 
morphology and migration phenology. Our results suggest that bi-
otic responses to climate change are multidimensional, and that the 
connections between these axes of adaptation are complex.
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